Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2014  |  Volume : 2  |  Issue : 1  |  Page : 1-9

Characterization of hydantoin racemase predicted from the genome sequence of Lactobacillus pentosus KCA1

Department of Medical Laboratory Science, TWAS Genomics Research Unit, School of Basic Medical Sciences, University of Benin, Nigeria

Correspondence Address:
Kingsley C Anukam
Department of Medical Laboratory Science, TWAS Genomics Research Unit, School of Basic Medical Sciences, University of Benin
Login to access the Email id

Source of Support: Dr. Anukam KC research is partly supported by the Third World Academy of Sciences (TWAS), under the RESEARCH GRANT AGREEMENT (RGA) No.09-017RG/BIO/ AF/AC_G-UNESCOFR:3240230 312., Conflict of Interest: None

DOI: 10.4103/2348-0149.135605

Rights and Permissions

Background: Hydantoin racemase from Lactobacillus species of human origin has not been reported and characterized. The genome of Lactobacillus pentosus KCA1 has been sequenced and found to possess gene cassettes and open reading frames encoding the hydantoinase machinery, including a putative hydantoin racemase. Aims: To use bioinformatic tools to characterize the new hydantoin racemase predicted in the genome sequence of L. pentosus KCA1. Materials and Methods: Bioinformatic tools such as ClustalW algorithm was used to align hydantoin racemase from L. pentosus KCA1 with other hydantoin racemases extracted from the uniprot΢ database. I-TASSER was used for the prediction of secondary structure, 3-D model, similarity structure in PDB, and functional active binding site residues. Results: L. pentosus KCA1 hydantoin racemase showed significant amino acid sequence identity with hydantoin racemase from the selected bacterial organisms in the protein databank (PDB). The predicted secondary structure revealed 9 alpha-helices and 8 beta-strands. Functional prediction using enzyme partners predicted EC number as the corresponding enzyme homolog (3eq5A) showing Cys83 and Cys187 as the potential active residues in KCA1 hydantoin racemase. The 3-D structure of KCA1 hydantoin racemase has a confidence score (C-score) of 1.2 that reflects a model of better quality, based on 3qvjA from PDB. Conclusion: The in silico data presented provides new insights into the potential activity and substrate specificity of hydantoin racemase from L. pentosus KCA1 and has proposed a mechanism for racemization of hydantoin derivatives that is consistent with the two-base process observed in other members of the Aspartate/Glutamate superfamily.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded949    
    Comments [Add]    

Recommend this journal